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Loop quantum cosmology, boundary proposals, and inflation
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The loop quantum cosmology of the closed isotropic model is studied with special emphasis on a compari-
son with traditional results obtained in the Wheeler-DeWitt approach. This includes the relation of the dynami-
cal initial conditions to boundary conditions such as the no-boundary or the tunneling proposal and a discus-
sion of inflation from quantum cosmology.
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[. INTRODUCTION in the flat isotropic model only because a nonvanishing in-
trinsic curvature leads to effects that complicate the loop
. .. . quantization. Recently, the methods of loop quantum cos-
. Tr;admor(;allly, ?]L.Jar?tum coks)mplogyb has Ibeerl Ttuddled ! ology have been extended to homogeneous models with
simple models which were obtained by a classical reduction, , ,\ anishing intrinsic curvatufd 5] such that now a consis-

of general relativity to a system of finitely many degrees ofie; quantization of the closed isotropic model is also avail-
freedom and a subsequent application of quantum mechani|e.
cal methodg1,2]. A corresponding full quantum theory of  sjnce the traditional results have all been derived for the
gravity, let alone a relation of the models to it, has remainectjosed model only, it is more important to compare with the
unknown beyond a purely formal level. The most importanteffects of loop quantum cosmology for that model. The gen-
question for quantum cosmology, whether or not classicaéral qualitative results mentioned above remain true for the
singularities are absent, has not been answered positively ilosed model, but some of them can be different quantita-
this approach. Instead, the classical singularity has been réively. For instance, we will see that the dynamical initial
moved by hand and substituted with some proposals of ineonditions resemble the no-boundary proposal more closely
tuitive initial conditions[1,3,4]. than the tunneling proposal. This observation might appear
The situation has changed, however, with the advent ofegative because the no-boundary proposal is widely per-
quantum geometryalso called loop quantum gravity; see ceived as being unsupportive to large initial values of the
[5—7]), a consistent canonical quantization of full generalinflaton field which are needed for a sufficient amount of
relativity. It is possible to derive cosmological models in ainflation. Here, however, we have an alternative inflationary
way that is analogous to the full theofs], yielding loop ~ Scenario based on the modified approach to classical singu-
quantum cosmology9,10]. In this reduction, the main de- Iantl_es .Wh.ICh is also reallz_ed |n.the close(_j model. But due to
parture from the traditional approach is the prediction thanthe_lntnnsm curvature thg inflationary period does not neces-
quantum Riemannian geometry has a discrete structure. Tﬁ@rlly extend to arbitrarily small values of the scale factor,

effects caused by the discreteness are most important atVH‘iCh could lead to insufficient inflation. As a new possibil-

small volume, implying that the structure close to the classi-Ity we will therefore look at the closed isotropic model as

cal singularity is very different from that of a Wheeler- embedded in the anisotropic Bianchi type IX model. This
ng y 1S y ¢ . . - leads to additional quantum modifications of intrinsic curva-
DeWitt quantization, which fails to resolve the singularity

. ) . 2 ture terms and of the classical behavior, implying a second
problem in this regime. At large volume, however, the dis- pYing

, » eriod of inflation at very small volume. With this more gen-
creteness leads only to small corrections and the tradition@l g quantization the inflationary picture of the closed model
approach is reproduced as an approximation.

: is more complicated but comparable to that of the flat model.
Therefore, the main new results of loop quantum cosmol-

ogy affect the behavior at small volume: There is no singu-

larity [11], the initial conditions for the wave function of a II. LOOP QUANTUM COSMOLOGY OF THE CLOSED

universe follow from t_he e\_/olutior_1 eguati({c_l_z], and the ISOTROPIC MODEL
approach to the classical singularity is modified by nonper-
turbative effects which imply an inflationary peridd3]. Quantum geometry and loop quantum cosmology are

From the point of view of initial conditions, the situation Pased on connection and densitized triad variapl€s17)
looks closest to DeWitt's original proposal, presenting, how-Which in the isotropic casf10,18 are given byc=I"—yK
ever, a well-defined generalization to other modék. So andp, respectively, wherK is t_he_ext_rlnsm curvature and the
far, all these results have been derived and studied in detdgp@rameterl” represents the intrinsic curvature with values
I'=0,; for the flat model and closed model, respectively.
The two variables are canonically conjugafe;p}= 3y«
*Electronic address: bojowald@gravity.phys.psu.edu where k=87G is the gravitational constant and is the
Electronic address: kfvander@gravity.psu.edu Barbero-Immirzi parametdrl7,19 which is a positive real
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number and labels classically equivalent formulations. Thalifferent orientations, its isotropic componeptcan take
relation to the better known Arnowitt-Deser-Misn@DM ) both signs.

variables is given bk = — a (extrinsic curvaturgand|p| The dynamics is governed by the Hamiltonian constraint
=a?, wherea is the scale factor. Since a triad can have two[10]

H=—6y 2k "[(c—2)c+(1+y)IIsgnp)\[pl D)
—6y 2k 1c? sgr(p)|p| for the flat model,
= 2
—6y 2k c2—c+ L (1+9?)]sgn(p)y|p|  for the closed model, @
|
or, in terms of the extrinsic curvature, 1 exginc/2)
cogc/2)|n)= s[expic/2) +exp —ic/2) | —=———
H=—6x"Y(K2+T?)sgn(p)p| 2 V2 sin(c/2)
. 1
-2k 1a%a (flat), =§(|n+1>+|n—1>), )
| -2k %a2+1)a (closed, .
3 sin(c/2)|n)= — Si[explic/2) —exp(—ic/2)]
which in the form of the constraint equatidth-+H ,41e(2)
=0 with the matter Hamiltoniam @) yields the usual exp(inc/2)
Friedmann equation X \/5 sinc/2)
a 3H+ prmatef@) =0. (4) 1
et =—Zi(n+1)-In-1)). ©)

In quantum geometry holonomies of the connection to-
gether with flux variables associated with the densitized triad = 5, example is presented by the inverse scale factor op-

are promoted to basic operators. One usually works in thgator which is needed, e.g., in order to quantize the kinetic

connection representation, where states are functionals in ﬂb%rt of matter Hamiltonians. Since the triad and volume op-

infinite-dimensional space of connections via holonomiesg 4o have a discrete spectrum containing the value zero,

After reducing to isotropic variables only one gauge invari-y,ay 4o not have a densely defined inverse, which would be

ant connection componestremains, and states in the con- hocessary for a well-defined operator. However, there are

nection representatl_on_are_ functions of this single parametef,athods in quantum geometig0] that allow the classically

An orthonormal basis is given by the states divergent inverse scale factor to be turned into a well-defined
operatof21]. To that end, one has to rewrite it classically as,

1 .
exp(z inc) e.g.

<C|n>::\/§Tn%C (5

a =6y ke, VI =12y L LelciemicR i3,

labeled by an integen. The stategn) are eigenstates of the using the symplectic structure. On the right hand side, an

basic derivative operatop which quantizes the isotropic inverse of the volume no longer appears, and it can easily be
triad component, quantized by using the multiplication operat@8s, (9) and
R the volume operata(i7), and turning the Poisson bracket into
p|n)= 29 %n|n), (6) a commutator. As a result, the classical divergenca of,
which is also present in Wheeler-DeWitt quantizations where
where the Planck length.= k7% appears. We will later a simply becomes a multiplication operator, is cut off at
mainly use the volume operator which also has the states small volumes and the inverse scale factor operator is finite.

as eigenstates: We also note that rewriting a classical quantity in the way
above introduces new possibilities for quantization ambigu-
VINYy =V 1) n—plny = (1 2/6)%2\/(In]— 1)[n|(In[+1)|n). ities. For instance, we wrote the connection compoess

@ an exponential which can appear with an arbitrary integer
power. This integer determines at what volume the classical
Composite operators will be constructed from the volumedivergence is cut off22], an effect that will be used and
operator together with the multiplication operators discussed in more detail later.
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Another example of a composite operator that can be builfransforming to the triad representation results in the differ-
from the volume and multiplication operators is the Hamil- ence equation
tonian constraint. We first recall the result in the flat isotropic

case where methods used in the full the[2g] lead to the sgNN+4)(V|n4 42— V|n+4\/271)eisn+4(¢)
constraint operatdrl0,24 5
—(2+y )Sgr(n)(v\nvz_V|n|/271)sn(¢)
Hpa= 961 (¥°x13) ! sin’(c/2)cog(c/2) +59MN—4)(Vjn_a/2= Vin-a/2-1)€ 'Sn_4a( )
X[sin(c/2)V cogc/2)—cogc/2)V sin(c/2)] = — 1 31 2 matef M) Sn( @), (14)
(10 N

where the reduced matter Hamiltonibig,,.(n) defined by

with the action Hmatieln) @[ ) =:[n)® A mate(N) | #) acts only on thep de-
pendence of the wave function. One can easily check that it

I:Iflat|n>=3('y3K|%)7l sgrn)(Vnj2— Vinjiz—1) is possible to evolve through the classical singularitynat
=0 in the same way as in the flat cd4d]; thus, the singu-
X(|n+4)=2[n)+[n—4)). (11 Jarity is absent in the loop quantization.

In order to derive a continuum approximation at large
As usual, the constraint equatidt|s)=—H.elS) turns  volume we have to find a continuous wave functigfp, ¢)
into an evolution equation after transforming to a triad rep-related to the discrete wave functisp(¢#) which does not
resentation. In a triad representation the stajeis repre- vary strongly at small scales and solves an approximating
sented by the coefficients,(¢) which appear in a decom- differential equation derived from Ed14). Since a good
position of the statels)=3,s,(¢4)|n) in terms of triad continuum limit is a prerequisite for a correct classical limit,
eigenstate$n). Here, we also write the dependence of thea wave function allowing such an interpolation is called pre-
wave function on a matter valug which we do not need to classical[12]. In the flat case the wave functios, itself

Specify further for our purposes. The matter Hami|tonianturned out to lead to the preclassical solutions, while general

o acts on thep dependence of the state, but via metric considerations show that this cannot be the case in the pres-
matter \ ence of large intrinsic curvatufd5]. In this case the wave

components also on the gravitational part with the label e >, _ o
Since the triad has a discrete spectrum in loop quantum co&unction s=exp(3I'p/¢1g)s with coefficients

mology, the evolution equation is a difference equation in the

Qiscrete i_nternal_ time, rather than a secon_d o_rder di_fferen- S,(p)=e""s (p)=€"s, (), (15)
tial equation as in a Wheeler-DeWitt quantization. Still, for a

large volumen>-1 and small extrinsic curvature the differ- \here the phase factor cancels small-scale oscillatiosg,in
ence equation can be well approximated by a differential5s to be used for a continuum limit. As i85] for the flat

equation such that the Wheeler-DeWitt approach and thus theyse it can then be verified that the approximating differen-
semiclassical limit are reproduced at large voluf@s. At g equation fom>1 is

small volume close to the classical singularity, however,
there are large corrections which must not be ignored. 14 2 1

In .the flat model as discussed above, t_he_lntr|n5|c curva- — —|é——1 Mw(p,m: — = kel P) (P, ),
ture is always zero such that small extrinsic curvature at 2|9 " gp? 3
large volume implies small total curvature, and we expect (16)
almost classical behavior. In the closed model, on the other

hand, the intrinsic curvature represented by the parametgfhere y(p, ¢) is an interpolation of the preclassicai( ).

I'=3 is constant and never small. A general consistent IooH.he left hand side can be written asl(4R2+1)az/;(a )
quantization of homogeneous mod¢ks] can be obtained which shows that the Wheeler-DZeWitt equation’ as a

by subtrgctmg“ from the connection componeassuch that Schralinger-like quantization of Eq(4) is reproduced at
we obtain the constraint operator large volume. The ordering is fixed in E(L6) and follows
. from the nonsingular difference equation of loop quantum
H=96i(y3xlI3) " Y{sin[(c—1/2)/2] cosmology. For de Sitter space with a cosmological constant

% co2[(c—1/2)/2]+ 1216} A we obtain the general solution

X[sin(c/2)V cogc/2)—codc/2)V sin(c/2)] (12) VIplw(p)=A Al —(3A/2)"3(p—3/2A)]
. . +B Bi[—(3A/2)Y3(p—3/2A)]
with action
A I in terms of Airy functions. The wave functiop(p) either is
HIn)=3(y*k1p) ™" Sgr(m) (Vinj2~ Vinj2-1) zero in p=0, if and only if A AI[(2)4A 2%)=

x[e '[n+4)—(2+y?)|n)+e€'ln—4)]. (13) —B Bi[(3)**A %3], or diverges there.
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III. DYNAMICAL INITIAL CONDITIONS

When we approach the classical singularitynat0 by
going to smaller values afi, we have to take into account
discrepancies between the Wheeler-DeWitt equation and th
difference equation of loop quantum cosmology. As a differ-
ence equation, the exact constraint equatich can be used
as a recurrence relation which determines the wave functior
starting from initial values at some finite positive valuesiof
We can find values, for smallern as long as the coefficient
Vin—aj2=V|n-ajo-1 Of lowest order in Eq.(14) does not
vanish. However, it does vanish if and onlynif=4 such that
we cannot fixsy(¢) in this way. As in[11] this does not
mean that there is a singularity, because we can evolve
throughn=0 and find all values of the wave function for a ° 50 100 150 200 250 800
negative internal time. But the part of the constraint equa- /a

tion for. n”=4 has tc_) *?e gatisfiesj. Instead _Of fixiggin terms FIG. 1. Preclassical solutiorV(,,,—V n‘,z,l)gn of the discrete
of the initial data, it implies a linear relation betwegnand equation (14) compared to a sqution/Jﬁdf(p) of the Wheeler-

Sg, Which have already been determined in previous steps Ghewitt equation(16) such thaty is regular atp=0 (solid line),
the recurrence. Therefore, the constraint equation imposggresponding to de Sitter space witth =102/ 52.
implicitly a linear consistency condition on the initial data

which serves as an initial condition. Since it is not imposedthus resembling the no-boundary wave function. We note

separately bUt.fOHQV.V.S from _the evolution quat_ion, it is however, that in the limit of smalh, ¥ approaches zero,
called a dynamical initial conditiofiL2]. Note that it gives us satisfying DeWitt's initial condition.

only partial information and does not fix the wave function The previous analysis in terms df(a) shares the same

completely in the presence of matter fields. ., flaws as the traditional approach to quantum cosmology in
_ While the values, of the wave function at the classical ot congitions on the wave function are specified near the
singularity is undetermined and it is thus impossible to for- | cqicq) singularity where we might expect to see large cor-
mulate th(_a dynamica_l initial conditions as conditionsna_t rections due to the effects of discrete space. The evolution
=0, they imply effectively that a preclassical wave function o 4tion(14) needs to be solved in order to determine if the
has to approach zero closerte-0. In this sense, itis similar  gigcrete effects modify the analysis. Since the dynamical ini-
to DeWitt's initial condition which requires the wave func- iz condition forces the discrete wave function to approach
tion to vanish at the classical singularity. In contrast to thaG e, tor smalla, the wave function increases for growiag
condition, however, the dynamical initial condition is well hefore it starts to oscillate. As in the previous analysis, the
posed in the discrete conteteee, e.g.[14). wave function exponentially increases in the classically for-
For the closed model we can now also compare the dyp,qqen region. A numerical solution to E6L4) with a cos-

namical initial condition with other traditional proposals, mological constant exhibits this behavieig. 1), reinforc-
most importantly the no-boundafg] and the tunneling pro- g the previous analysis and indicating that the dynamical

posals(4], which have been discussed only in this case. Tqpjia| condition imposes conditions similar to the no-
do that we first consider the approximate differential equangundary proposal.
tion for the Hamiltonian constraingl6) and rewrite it in

terms of the scale fact@ and in the “de Sitter” approxima-

N .

tion where the scalar field potential is approximated by a IV. INFLATION
cosmological constantv and the scalar field dependence is
i(gnored: gica P It has been speculated that the no-boundary proposal does

not predict large enough initial values for the inflaton field,
q q ) which suggests that a sufficient amount of inflation cannot be
a . .
a—a '———(9-6xkVad) |a¥(a)=0. (17 realized 28]. If correc_t, the same conclu.smn_vyo_uld appl_y_ for
da da |g a wave function satisfying the dynamical initial condition.
However, loop quantum cosmology presents an alternative

This represents an ordering of the Hamiltonian constrainf?®chanism of inflatiori13] which does not necessarily re-
that has not previously been considefedmpare, e.g., the 9duiré an inflaton fleld_. This scenario explo!ts quantum modi-
o L= . fications of the classical equations of motion implied by the
general analysis if27)). If we write ¥ =a¥ we see thaim discrete formulation. There are several types of corrections,
order for'¥ to be bounded for smalk we demand tha?  pyt we can focus on the nonperturbative effect that results
approach zero. Foka?V<1 the solution to Eq(17) satis-  from a quantization of the inverse metric components, since
fying W(0)=0 is Aaly(3a%2l E,), wherel 1, is the modi- it implies the most drastic changes. The effect contains an
fied Bessel function and\ is an arbitrary constant. When ambiguity parameter, and by choosing it to be large the non-
matched to the WKB solutions in the exponential region, thisperturbative modification extends into the semiclassical re-
solution picks out the exponentially increasing WKB mode,gime. The wave function can then be approximated as a
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wave packet, following the effective classical equations of a=-1v/(a)>0 forsmall a,
motion which we will discuss now.

The eigenvalues of a density operath=a™°;, which  sych that the effective classical evolution at snaais infla-
quantizes the classical densiy ® in the kinetic part of the  tionary. An inflaton field and therefore large initial values are
matter Hamiltonian, can be computed explicitB2] for ar-  not required for this kind of inflation, which is purely due to
bitrary values of the ambiguity paramefemwhich is a half  quantum geometry effects.

integer. Here we need only an approximate expression for |t js, however, necessary that there be a large enough

the eigenvalues: overlap between the region where the effective potential de-
Lo 6 creases and the classically allowed region where the effective
dj n~ (5 ¥IeN) " p(n/2j)°, potential is negative. In this intersection we can use the ef-
) fective classical equations of motion and obtain an amount of
where the function inflation a;/a; given by the initial scale factos; where the

_ 8 1/4 11/4 11/ classically allowed region starts and the final scale faator
pla)=7a A7L(q+1) la=1/*1 where th)é modified i?mreasing density goes over intf) the
—11g[(q+1)™—sgrniq—1)|q— 1|} (18)  standard densitg 3. For the flat model, the entire region of
positive a was classically allowed, ang can be arbitrarily
approaches 1 at large values but incorporates nonperturbatiégna||, restricted only by the eventual breakdown of the ef-
corrections for smalh<2j. In the effective classical equa- fective classical approximation. In the closed model, how-
tions of motion the modified density will appear as a con-eyer, the nonzero intrinsic curvature leads to a hill in the

tinuous function, effective potential at sma#l such that the classically allowed
I 2, 12:\6 region starts at a positive value of the scale factor. An ap-
di(a)=a “p(3a7/yei) proximate expression for the ratég/a; can be derived in the
126 /1 —15/2 1 case of a free massless scalar field. Using the sanalb-
_6(_7| gj) a'?  for a’< = yl3j, proximation ofd; in Eq. (19), the classical turning point
7 3 3 corresponds to where the effective potential equals zero. This
1 gives
a % for a2>§yI§j,
3 7% (3 ,\ P71
19 1. —

derived usinga®~ vl ,zgn. The precise form of the behavior

for smalla is subject to quantization ambiguities, but quali- wherep, is the conjugate scalar field momentum. The infla-
tatively it always has the above form. Additionally, the tionary regime ends Wherdj,(a) takes on its maximum

ower ofa in the smalla approximation is usually high, as . - .
Pow I pproximation 1S usuatly hig value, which corresponds tﬁ)%\/ylzpj +/3[22]. For practical

in the example used here. . > L
values of the parameters the inflationary region is small, and

In particular,d;(0)=0 andd;(a) increases as a function ; ) X )
of a at small volume, in contrast to the classical divergence9€tting large amounts of inflation would require large values

Consequently, the effective matter Hamiltonian, e.g.,Of Py-
H%ﬁatte(a)= %dj¢(a) pfb+ a®V(¢) for a scalar, always satis-

fies A. Suppression of intrinsic curvature

i 1yt —0 With the quantization of the closed model presented so far
'm a matef @) =0, it is hard to get a large amount of inflation because the in-

? trinsic curvature introduces a potential hill, which prohibits
even taking into account the kinetic term, which would di- the scale factor from attaining very small values classically.

verge classically. We can view the Friedmann equatién The divergence of the kinetic part of the matter Hamilto-

+V(a)=0 as describing a classical motion in the effectiveMaNS: which could cancel th_e potent!al hill, is cut off by.
potential quantum geometry effects. Since the inverse scale factor in

isotropic cosmologies is related to the extrinsic curvature,
V(a)=1—2«ka HE" (a), (20)  this can also be interpreted as an extrinsic curvature cutoff.

Because intrinsic and extrinsic curvature belong to the same
where we ignore the dependence on the matter field. Becaugeometrical object in a covariant treatment, one could expect
the modified density is increasing at smaljust like a po- that there is a similar effect which suppresses the intrinsic
tential term, the derivativ®/’ (a) of the effective potential is curvature represented by the spin conneclien3. This can
negative for smalb. The effective classical equation of mo- in fact be realized by viewing the closed isotropic model as
tion then implies being embedded in the anisotropic Bianchi type 1X model.
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FIG. 2. Example of an effective potentid}-(a) (a in multiples
of the Planck lengthfor a massless scalar with zero potential and a
cosmological constankA=1O’3I;2. The ambiguity parameters
are =20, j,=100, and the scalar momentum jsp,,=1003.
For larger values oh the potential continues to decrease since the I'e(a)=3[2p(3a%/ vl E,jr)z— p(3a?/yl ,%jr)“].
cosmological constant term dominates. The dashed lines are the

effective potential withouf™ suppression and a kinetic terfap- .
proaching 1 fora=0), and without" suppression and with a stan-  The presence of a matter potential then leads to a small
dard kinetic term(which diverges fora=0). classically allowed region betweer=0 and some positive

value(see Fig. 3, because the potential term increases faster
An anisotropic model has three independent triad compothan the suppression in the intrinsic curvature term, owing to
nentsp' which determine the intrinsic curvature via the spinthe large power in the smad-approximation(19). Initially,
connectionT'; =3[ p%/p3+ p%/p?— p?p®/(p')?] and analo- the effective potential decreases, implying an inflationary ep-
gous componentk, andI'; (for Bianchi type 1X[26]). The  och. After some time, the increasihgwill start to dominate
isotropic model can be obtained by fiximgt=p?=p3=p the effective potential, which terminates inflation. WhEn
such thafl’,=3=T". The Hamiltonian constraint of the Bi- increases such that the effective potential reaches positive
anchi type IX mode[15] requires a quantization of the spin values, the classically allowed region ends and a potential
connection, which has to be a well-defined operator. Sinc&ill emerges where the wave function stops oscillating and
the component§’, contain inverse powers of the triad, we instead changes exponentially. After the hill, we have the
have to use inverse triad operators introducing another ansecond phase of inflation already observed above, which usu-
biguity parametej which can be different from the param- ally will last only for a small number oé-foldings. However,
eterj,, used when quantizing the density- a3 appearing the first phase of inflation can start at values of the scale
in the scalar matter Hamiltonian. After reducing the quan-factor arbitrarily close to zero such that the amount of infla-
tized Bianchi type IX spin connection to isotropy we obtain, tion can be very high, just as in the flat case.

FIG. 3. The effective potential with the same parameters as in
Fig. 2 in the small classically allowed region.

with p(q) of Eq. (18), the eigenvalues So far we assumed that the ambiguity paramgten the
intrinsic curvature term is smaller than the paramegfewe

Fir n= 2p(nf2jr)2—p(n/2jr)4], had originally in the matter terms. If this is not the case, the
potential hill can even disappear completely jif>j,,

replacingl’= 3 in the constraint equation. Whemis small,  which implies a single phase of inflation. The closed model

the effective inverse triad components decrease sucﬂ“;pat is then very similar to the flat model for small volumes due

becomes smaller thah for small volume and approaches to the suppression of the intrinsic curvature term.

zero at the classical singularity. Foe-2j- we havel’; Another consequence of the suppression is that the wave

~%. In fact, we do have a suppression of the intrinsic cur-fun(?t'on’ V.Vh'Ch has to stgrt with a small \(alue at small
oscillates in the first classically allowed region and can grow

vature just as the extrinsic curvature is suppressed. ; . .
J PP before it reaches the second region at large vol(rig. 4).

As a consequence, the potential hill in the effective poten _ . _ ) -
tial shrinks because the intrinsic curvature term whichON€ Might think that this scenario would lead to more simi-

equaled 1 before is no longer constant and approaches ZerIélrities between the discrete wave function and that obtained
lim, ., V() =0 rather than Isee Fig. 2 where with the tunneling proposal, which would be the case if the
a— :

wave function decayed in the classically forbidden region

Vr(a)=4F§ﬁ(a)—%Ka‘lH%ﬁatteﬁa) [28]. However, in the classically forbidden region we still
have two independent solutions, one exponentially increas-
and ing and one exponentially decreasing. Since the dynamical
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We consider matter in the form of a scalar field, and the
Friedmann equation becomes

a)z xdj (P52 A(T2-T)
a

EYCI 3 Vio)+ 2 (23

* where p¢=a3<'j> is the conjugate momentum to the scalar
field andT" is the spin connection. We note that whEn
. =1/2 we regain the usuat 1/a®> term of the Friedmann
T, P, o7 equation for the closed model. For smalwe can use the
+ + + ++++ . . . .
e T wF expansion ford;(a) in Eq. (19) to derive an approximate
Tagp et expression foit {(teg) -
0 5 10 15 20 25 30 35 40 45 50 First we consider a free, massless scalar field where the
w4 potential is zero and the conjugate momentum is constant. In

the flat model the curvature term is zero and tlausa'*?

and the forward light cone diverges as the integral is taken to
small values of. In the closed model, however, the integral
begins at the minimum classical scale factor such that it does

initial condition, unlike the tunneling proposal, is not tailored N0t diverge. Given that the amount of inflation is small for

to select the decreasing part, the increasing part will pdhe closed model in this region, it would require very large
present and dominate the solutiFig. 5). values forp , to overcome the horizon problem. We will see

that this problem is further evidenced in the flatness problem.
In the presence of a scalar potential, for small enoagh
the potential term will dominate over the kinetic term. We
We now seek to answer quantitatively the question ofhave shown that, with® suppression, the closed model be-
whether or not enough inflation is obtained with the quantunhaves similarly to the flat model in the smalllimit. Since
modifications. A central problem with the standard big banghe kinetic term is suppressed, the scalar field remains nearly
(SBB) proposal is the “horizon problem” in which the co- constant and standard inflationary behavior occurs close to
moving region observed by the cosmological microwavethe classical singularity. Ther@ grows exponentially and
backgroundCMB) is larger than the comoving forward light 5 5. thys the forward light cone diverges beginning at the
cone at the recombination tintg., thus implying regions of  |ssical singularity.
the CMB out of causal contact. The forward light cone

l+(t,ed IS given by

FIG. 4. Wave function in the smadl-classically allowed region
with T" suppression fof=50, obtained as a solution to E{.4)
with 49°T; _ , replacingy® on the left hand side.

B. Horizon problem

C. Flatness problem

amma_'a' (22 problem. The dimensionless paramet®e p/p.= kp/3H?2,

where p.=3H?/« is the critical density andi=a/a is the
Hubble parameter, indicates the spatial topold@y: 1 gives

a closed universe where&bs<1 gives an open universe. In
the SBB model{) =1 is an unstable fixed point; the devia-
tion e=Q—1 grows likea for a matter dominated universe
and likea? for a radiation dominated universe. Current mea-
surements put the value dd~1 [29], requiring ) to be
extraordinarily close to 1 in the early universe in the SBB
scenario.

We considere=Q—1=k/a? and use the Friedmann
equation(23) to write € as a function of the scale factar

l1(tred =

trec 1 di— Jarecda The flatness problem represents itself as a fine-tuning

o a(t)

€= k( Lxd; (@)aip3+3kaV(¢) - k) 1 (24

0 50 100 150 200 250 300 In standard inflation, the universe undergoes a period of ex-
/4 ponential growth in whicke is driven close to zergspatial

FIG. 5. Logarithm of the absolute value of the wave function flatness, thus avoiding the necessity of fine-tuniily and
between the first two classically allowed regiorjg£50). In the ~ Predicting a current value d@ close to 1 for most models.
classically forbidden region the wave function grows by more thanWith quantum modifications is also driven toward zero
40 orders of magnitude and is very similar to a solution witiut during the inflationary period. Considering a massless scalar
suppression. field, for smalla the kinetic term is an increasing function of
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a and thuse decreases untwj¢(a) becomes a decreasing 25

function, after whiche grows witha. The minimum value of
€ can be approximated by using the fact tdg}(a) takesits 5

maximum value ablpear \¥13] 4/3 With dj macapey [22].
This gives a minimum value

&( 3 )2_1
3 7'%1'4;

15

-1

(25) 10

€min~

Assuming that there exists a region where the matter kinetic S
term dominates the curvature term we find that;,
~j(2ﬁ/p(2b; thus in order to drivee sufficiently close to zero
we need small values dfy and large values op,. This 0 02 04 06 08
presents a problem singg needs to be sufficiently large so t
that the quantum corrections occur in the region where thet.8
classical equations of motion are valid. If we take a reason-
able value ofj ,=100, we find that in order foe to have the
required accuracy of 1I6° near the Plank regim@ssuming 14
no second round of standard inflat)om/;p¢, needstobeon 4,
the order of 1?PI§,. It thus seems unlikely that the quantum
corrections alone can provide enough inflation for the closed *
model. 0.8
The inclusion of a potential does not help the matter. To
drive e close enough to zero would require either unnaturallyo'6
large values of the potential or very large values of the finalg.4
scale factor at the end of inflation. The latter scenario would
then be equivalent to standard inflation.

ury

1.6

0.2

0
0 0.2 0.4 0.6 0.8
D. Summary t

—_

We ha_v_e seen that the_ratm_/ai ce_lnnot be large enough FIG. 6. Scale factoma (top) and scalar¢ (botton) in Planck
for a sufficient amount of inflation with natural values of the | its with a mass termcV( ) = 1031 ¢%/2. The first phase of
different parameters, which are mainly the half-integer aMyuantum geometry inflatiofwhich ends at~0.4) leads to large
biguity labelj , and the initial valuep,; of the scalar momen- nitial ¢ for a second phase of slow roll inflatigwith j ;=100 and
tum. As a function of these parametess/a; increases only j.itial values $o=0, io~105151 at a;=2lp such that
slowly with p, and decreases with, (small values ofj 4 VKD ~1002).
also appear more natural from a conceptual point of yiéfw ’
we invokel" suppression, introducing a new paramgtef g4
the situation looks better since we have an early inflationary
region with smalla; . However, in this regime the viability of
the effective framework remains to be understood.

The best scenario can be obtained by using guantum g(?ésulting in the second order equation of motion
ometry inflation in order to generate standard inflation. This
happens naturally whenever there is a matter component dd
which is well approximated by a scalar with a flat potential. -, _ J¢(a) +d N =p.ad! —a3d V&

In the quantum geometry regime the equations of motion of(ﬁ_ AT, o()Ps=Pya i¢(a) a’d; (a)V'(4)
the scalar have a different form from the usual one because

of the modified density. Equations of motion can be derived dlogd; (a) s ,

from the Hamiltonian, which for a scalar has the effective -a da Hé-a dj¢(a)v (¢)

form

Py=1Ps Hiel@)}=—a%V'(¢),

off 1 2. 3 with the Hubble paramete. In the standard case;(a)
Hmatef @) = 2d; (@) py+a°V(¢). =a % we havead log dj(@)/da=—3, and the first order
term serves as a friction which leads to slow roll for a suffi-
This yields ciently flat potential. For the modified(a) at small volume,
howeverd;(a) increases and thusd log dj(a)/dais positive.
. In this case, the friction term has the opposite sign and forces
— eff —
¢—{¢,Hmane(a)}—dj¢(a)p¢ the scalar to move up the potentiagke Fig. 6, whose initial
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values have been chosen for the purpose of illustration; onmtrinsic curvature which can be realized by embedding the
can easily achieve larger maximal values fby using a isotropic model in the anisotropic Bianchi type IX model.
larger initial ¢). This introduces a second ambiguity paramegterwhich in-
Thus, quantum geometry modifications drive the scalar upluences the results. [f;<jr, there is no potential hill and
the potential during early phases, even if it starts in a minithe whole region of scale factors between zero and a possible
mum, thereby producing large initial values for standard in-recollapse value is allowed classically. In this case, the
flation. It remains to be seen whether the standard inflationclosed model is very similar to the flat model at small vol-
ary phase will wash away any possible signature of théime. Otherwise, there will be a potential hill and we have

quantum geometry phase, or if it can be distinguished froniwo classically allowed regions. For smafl, the first region
other scenarios. is only small and the wave function again resembles that of

the no-boundary proposal. jf is increased, the first classi-
V. DISCUSSION cally allowed region grows such that the wave function can
increase there and is nonzero at the start of the intermediate
We have studied the closed isotropic model in loop quanclassically forbidden region. However, the result remains
tum cosmology and seen that it reproduces all of the mairloser to the no-boundary proposal than to the tunneling pro-
general results: its evolution is nonsingular and it predictgosal because the exponentially increasing branch of the
dynamical initial conditions as well as the occurrence of in-wave function will dominate in the classically forbidden re-
flation. The advantage of using the closed model is that wejion. Still, depending on the values of the ambiguity param-
are able to compare with older attempts to understand theters we obtain modifications of the old proposals, realizing
quantum dynamics. In fact, those approaches are reproducefferent aspects of them. Furthermore, the values will influ-
at large volumes, but many new properties result at smaknce the amount of inflation achieved within a given model.
volumes. The initial conditions, for instance, have a very We also have to give some cautionary remarks. While the
different origin since they are derived in part from the dy-quantization of the flat model can be regarded as being very
namical law and not imposed by hand. Furthermore, the facelose to that of the full theory, the closed model requires
tor ordering of the constraint is fixed by the requirement of aspecial input due to the large intrinsic curvature. In the flat
nonsingular evolution. Older attempts have often beemmodel, the intrinsic curvature vanishes identically, and in the
plagued by the factor ordering problem, because differentull theory it can be ignored locally. Therefore, it has to be
orderings can lead to qualitatively different results and evewerified that the physical effects are not artifacts of the spe-
invalidate certain proposa[&7]. Still, as in any quantization, cial techniques but indeed model the full theory. As we have
there are many ambiguities which can be included with cerseen here, viewing a symmetric model as being embedded in
tain parameters lik¢, . These ambiguities, however, usually a less symmetric one can lead to important effects. In our
lead only to quantitative differences, leaving the main resultgase, those effectd’(suppressionwere welcome and im-
unchanged. They can, therefore, be used for a phenomenproved the model from the point of view of cosmological
logical analysis. model building. It is certainly a very important issue to in-
As for dynamical initial conditions, the constraint equa- vestigate the similar, but much more complicated, correspon-
tion requires the wave function to approach very small val-dence between symmetric models and the full theory. Also,
ues at the classical singularity such that the effect is oftemore complicated models contain many ambiguity param-
similar to DeWitt’s initial condition. However, due to the eters whose physical roles and reasonable values are not
effects of the discreteness the initial value problem is wellcompletely clear yet. Still, they provide a rich ground for
posed(which presents some realization of the Planck potenphenomenology which allows studying the same objects and
tial of [30]). The first quantization we used for the closed effects present in the full theory in a much more simplified
model is closely related to the no-boundary proposal, while itontext.
would be different from the tunneling proposate note,
howefver,. tha}t we ignored the kinet!c term of _the matter ACKNOWLEDGMENTS
Hamiltonian in Eq.(17) as usual in this context; in a more
general discussion one can also expect more differences from We are grateful to A. Ashtekar for discussions and to A.
the no-boundary proposal due to quantum geometry modifivilenkin for discussions and for hospitality to one of us
cations of the kinetic term as 13]]. However, this quanti- (M.B.). This work was supported in part by NSF grant
zation does not take into account a possible suppression 6fHY00-90091 and the Eberly research funds of Penn State.

[1] B.S. DeWitt, Phys. Rev160, 1113(1967. [6] C. Rovelli, Living Rev. Relativl, 1 (1998.
[2] C.W. Misner, Phys. Revi86, 1319(1969. [7] T. Thiemann, “Introduction to Modern Canonical Quantum
[3] J.B. Hartle and S.W. Hawking, Phys. Rev.2B, 2960(1983. General Relativity,” gr-qc/0110034.
[4] A. Vilenkin, Phys. Rev. D30, 509 (1984. [8] M. Bojowald and H.A. Kastrup, Class. Quantum Grav,
[5] A. Ashtekar,Lectures on Non-Perturbative Canonical Gravity 3009(2000.

(World Scientific, Singapore, 1991 [9] M. Bojowald, Class. Quantum Gra¥7, 1489(2000.

124023-9



M. BOJOWALD AND K. VANDERSLOOT PHYSICAL REVIEW D67, 124023 (2003

[10] M. Bojowald, Class. Quantum Gra&9, 2717(2002. [21] M. Bojowald, Phys. Rev. 054, 084018(2001).

[11] M. Bojowald, Phys. Rev. Leti86, 5227 (2001. [22] M. Bojowald, Class. Quantum Gra%9, 5113(2002.

[12] M. Bojowald, Phys. Rev. Leti87, 121301(2001). [23] T. Thiemann, Class. Quantum Grab, 839(1998.

[13] M. Bojowald, Phys. Rev. Let89, 261301(2002. [24] M. Bojowald, Class. Quantum Grat8, 1055 (2007).

[14] M. Bojowald and F. Hinterleitner, Phys. Rev. &, 104003 [25] M. Bojowald, Class. Quantum Gra¥8, L109 (2001).
(2002. [26] M. Bojowald, Class. Quantum Gra20, 2595 (2003.

[15] M. Bojowald, G. Date, and K. Vandersloot, “Homogeneous [27] N. Kontoleon and D.L. Wiltshire, Phys. Rev. B9, 063513
Loop Quantum Cosmology: The Role of the Spin Connection” (1999.
(in preparation [28] A. Vilenkin, Phys. Rev. D37, 888 (1988.

[16] A. Ashtekar, Phys. Rev. 36, 1587(1987. [29] C.L. Bennettet al,, “First Year Wilkinson Microwave Anisot-

17] J.F. Barbero G., Phys. Rev. B, 5507(1995. . . -
%18% A. Ashtekar, M Bo')(gwald and J Lev(vandsowski Adv. Theor ropy ProbelWMAP) Observations: Preliminary Maps and Ba-
) » M. B50) ’ ) ' ' ' sic Results,” astro-ph/0302207; see also http://map.gsfc.nasa.

Math. Phys.(to be published gr-qc/0304074. govim_mm/pub,_papers/firstyear.html

[19] G. Immirzi, Class. Quantum Grag4, L177 (1997). )
[20] T. Thiemann, Class. Quantum Gra, 1281(1998. [30] H.D. Conradi and H.D. Zeh, Phys. Lett. ¥54, 321(199).

124023-10



