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Loop quantum cosmology, boundary proposals, and inflation
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The loop quantum cosmology of the closed isotropic model is studied with special emphasis on a compari-
son with traditional results obtained in the Wheeler-DeWitt approach. This includes the relation of the dynami-
cal initial conditions to boundary conditions such as the no-boundary or the tunneling proposal and a discus-
sion of inflation from quantum cosmology.
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I. INTRODUCTION

Traditionally, quantum cosmology has been studied
simple models which were obtained by a classical reduc
of general relativity to a system of finitely many degrees
freedom and a subsequent application of quantum mech
cal methods@1,2#. A corresponding full quantum theory o
gravity, let alone a relation of the models to it, has remain
unknown beyond a purely formal level. The most importa
question for quantum cosmology, whether or not class
singularities are absent, has not been answered positive
this approach. Instead, the classical singularity has been
moved by hand and substituted with some proposals of
tuitive initial conditions@1,3,4#.

The situation has changed, however, with the adven
quantum geometry~also called loop quantum gravity; se
@5–7#!, a consistent canonical quantization of full gene
relativity. It is possible to derive cosmological models in
way that is analogous to the full theory@8#, yielding loop
quantum cosmology@9,10#. In this reduction, the main de
parture from the traditional approach is the prediction t
quantum Riemannian geometry has a discrete structure.
effects caused by the discreteness are most important
small volume, implying that the structure close to the clas
cal singularity is very different from that of a Wheele
DeWitt quantization, which fails to resolve the singulari
problem in this regime. At large volume, however, the d
creteness leads only to small corrections and the traditio
approach is reproduced as an approximation.

Therefore, the main new results of loop quantum cosm
ogy affect the behavior at small volume: There is no sin
larity @11#, the initial conditions for the wave function of
universe follow from the evolution equation@12#, and the
approach to the classical singularity is modified by nonp
turbative effects which imply an inflationary period@13#.
From the point of view of initial conditions, the situatio
looks closest to DeWitt’s original proposal, presenting, ho
ever, a well-defined generalization to other models@14#. So
far, all these results have been derived and studied in d
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in the flat isotropic model only because a nonvanishing
trinsic curvature leads to effects that complicate the lo
quantization. Recently, the methods of loop quantum c
mology have been extended to homogeneous models
nonvanishing intrinsic curvature@15# such that now a consis
tent quantization of the closed isotropic model is also av
able.

Since the traditional results have all been derived for
closed model only, it is more important to compare with t
effects of loop quantum cosmology for that model. The ge
eral qualitative results mentioned above remain true for
closed model, but some of them can be different quant
tively. For instance, we will see that the dynamical initi
conditions resemble the no-boundary proposal more clo
than the tunneling proposal. This observation might app
negative because the no-boundary proposal is widely
ceived as being unsupportive to large initial values of
inflaton field which are needed for a sufficient amount
inflation. Here, however, we have an alternative inflationa
scenario based on the modified approach to classical si
larities which is also realized in the closed model. But due
the intrinsic curvature the inflationary period does not nec
sarily extend to arbitrarily small values of the scale fact
which could lead to insufficient inflation. As a new possib
ity we will therefore look at the closed isotropic model
embedded in the anisotropic Bianchi type IX model. Th
leads to additional quantum modifications of intrinsic curv
ture terms and of the classical behavior, implying a seco
period of inflation at very small volume. With this more ge
eral quantization the inflationary picture of the closed mo
is more complicated but comparable to that of the flat mod

II. LOOP QUANTUM COSMOLOGY OF THE CLOSED
ISOTROPIC MODEL

Quantum geometry and loop quantum cosmology
based on connection and densitized triad variables@16,17#
which in the isotropic case@10,18# are given byc5G2gK
andp, respectively, whereK is the extrinsic curvature and th
parameterG represents the intrinsic curvature with valu

G50,1
2 for the flat model and closed model, respective

The two variables are canonically conjugate:$c,p%5 1
3 gk

where k58pG is the gravitational constant andg is the
Barbero-Immirzi parameter@17,19# which is a positive real
©2003 The American Physical Society23-1
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number and labels classically equivalent formulations. T
relation to the better known Arnowitt-Deser-Misner~ADM !

variables is given byK52 1
2 ȧ ~extrinsic curvature! and upu

5a2, wherea is the scale factor. Since a triad can have t
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12402
edifferent orientations, its isotropic componentp can take
both signs.

The dynamics is governed by the Hamiltonian constra
@10#
H526g22k21@~c22G!c1~11g2!G2#sgn~p!Aupu ~1!

5H 26g22k21c2 sgn~p!Aupu for the flat model,

26g22k21@c22c1 1
4 ~11g2!#sgn~p!Aupu for the closed model,

~2!
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or, in terms of the extrinsic curvature,

H526k21~K21G2!sgn~p!Aupu

5H 2 3
2 k21ȧ2a ~flat!,

2 3
2 k21~ ȧ211!a ~closed!,

~3!

which in the form of the constraint equationH1Hmatter(a)
50 with the matter HamiltonianHmatter(a) yields the usual
Friedmann equation

a23H1rmatter~a!50. ~4!

In quantum geometry holonomies of the connection
gether with flux variables associated with the densitized tr
are promoted to basic operators. One usually works in
connection representation, where states are functionals in
infinite-dimensional space of connections via holonomi
After reducing to isotropic variables only one gauge inva
ant connection componentc remains, and states in the co
nection representation are functions of this single parame
An orthonormal basis is given by the states

^cun&ª
exp~ 1

2 inc!

A2sin1
2 c

~5!

labeled by an integern. The statesun& are eigenstates of th
basic derivative operatorp̂ which quantizes the isotropi
triad component,

p̂un&5 1
6 g l P

2nun&, ~6!

where the Planck lengthl P5Ak\ appears. We will later
mainly use the volume operator which also has the statesun&
as eigenstates:

V̂un&5V(1/2)(unu21)un&5~g l P
2/6!3/2A~ unu21!unu~ unu11!un&.

~7!

Composite operators will be constructed from the volu
operator together with the multiplication operators
-
d
e
he
.

-

er.

e

cos~c/2!un&5
1

2
@exp~ ic/2!1exp~2 ic/2!#

exp~ inc/2!

A2 sin~c/2!

5
1

2
~ un11&1un21&), ~8!

sin~c/2!un&52
1

2
i @exp~ ic/2!2exp~2 ic/2!#

3
exp~ inc/2!

A2 sin~c/2!

52
1

2
i ~ un11&2un21&). ~9!

An example is presented by the inverse scale factor
erator which is needed, e.g., in order to quantize the kin
part of matter Hamiltonians. Since the triad and volume o
erators have a discrete spectrum containing the value z
they do not have a densely defined inverse, which would
necessary for a well-defined operator. However, there
methods in quantum geometry@20# that allow the classically
divergent inverse scale factor to be turned into a well-defin
operator@21#. To that end, one has to rewrite it classically a
e.g.,

a2156g21k21$c,V1/3%512ig21k21eic/2$e2 ic/2,V1/3%,

using the symplectic structure. On the right hand side,
inverse of the volume no longer appears, and it can easily
quantized by using the multiplication operators~8!, ~9! and
the volume operator~7!, and turning the Poisson bracket in
a commutator. As a result, the classical divergence ofa21,
which is also present in Wheeler-DeWitt quantizations wh
a simply becomes a multiplication operator, is cut off
small volumes and the inverse scale factor operator is fin
We also note that rewriting a classical quantity in the w
above introduces new possibilities for quantization ambi
ities. For instance, we wrote the connection componentc as
an exponential which can appear with an arbitrary inte
power. This integer determines at what volume the class
divergence is cut off@22#, an effect that will be used and
discussed in more detail later.
3-2
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Another example of a composite operator that can be b
from the volume and multiplication operators is the Ham
tonian constraint. We first recall the result in the flat isotro
case where methods used in the full theory@23# lead to the
constraint operator@10,24#

Ĥflat596i ~g3k l P
2!21 sin2~c/2!cos2~c/2!

3@sin~c/2!V̂ cos~c/2!2cos~c/2!V̂ sin~c/2!#

~10!

with the action

Ĥflatun&53~g3k l P
2!21 sgn~n!~Vunu/22Vunu/221!

3~ un14&22un&1un24&). ~11!

As usual, the constraint equationĤus&52Ĥmatterus& turns
into an evolution equation after transforming to a triad re
resentation. In a triad representation the stateus& is repre-
sented by the coefficientssn(f) which appear in a decom
position of the stateus&5(nsn(f)un& in terms of triad
eigenstatesun&. Here, we also write the dependence of t
wave function on a matter valuef which we do not need to
specify further for our purposes. The matter Hamiltoni
Ĥmatter acts on thef dependence of the state, but via met
components also on the gravitational part with the laben.
Since the triad has a discrete spectrum in loop quantum
mology, the evolution equation is a difference equation in
discrete internal timen, rather than a second order differe
tial equation as in a Wheeler-DeWitt quantization. Still, fo
large volumen@1 and small extrinsic curvature the diffe
ence equation can be well approximated by a differen
equation such that the Wheeler-DeWitt approach and thus
semiclassical limit are reproduced at large volumes@25#. At
small volume close to the classical singularity, howev
there are large corrections which must not be ignored.

In the flat model as discussed above, the intrinsic cur
ture is always zero such that small extrinsic curvature
large volume implies small total curvature, and we exp
almost classical behavior. In the closed model, on the o
hand, the intrinsic curvature represented by the param
G5 1

2 is constant and never small. A general consistent lo
quantization of homogeneous models@26# can be obtained
by subtractingG from the connection componentc such that
we obtain the constraint operator

Ĥ596i ~g3k l P
2!21$sin2@~c21/2!/2#

3cos2@~c21/2!/2#1g2/16%

3@sin~c/2!V̂ cos~c/2!2cos~c/2!V̂ sin~c/2!# ~12!

with action

Ĥun&53~g3k l P
2!21 sgn~n!~Vunu/22Vunu/221!

3@e2 i un14&2~21g2!un&1ei un24&]. ~13!
12402
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Transforming to the triad representation results in the diff
ence equation

sgn~n14!~Vun14u/22Vun14u/221!eisn14~f!

2~21g2!sgn~n!~Vunu/22Vunu/221!sn~f!

1sgn~n24!~Vun24u/22Vun24u/221!e2 isn24~f!

52 1
3 g3k l P

2Ĥmatter~n!sn~f!, ~14!

where the reduced matter HamiltonianĤmatter(n) defined by
Ĥmatterun& ^ uf&5:un& ^ Ĥmatter(n)uf& acts only on thef de-
pendence of the wave function. One can easily check th
is possible to evolve through the classical singularity an
50 in the same way as in the flat case@11#; thus, the singu-
larity is absent in the loop quantization.

In order to derive a continuum approximation at lar
volume we have to find a continuous wave functionc(p,f)
related to the discrete wave functionsn(f) which does not
vary strongly at small scales and solves an approxima
differential equation derived from Eq.~14!. Since a good
continuum limit is a prerequisite for a correct classical lim
a wave function allowing such an interpolation is called p
classical@12#. In the flat case the wave functionsn itself
turned out to lead to the preclassical solutions, while gen
considerations show that this cannot be the case in the p
ence of large intrinsic curvature@15#. In this case the wave
function s̃5exp(3iGp̂/glP

2)s with coefficients

s̃n~f!5einG/2sn~f!5ein/4sn~f!, ~15!

where the phase factor cancels small-scale oscillations insn ,
has to be used for a continuum limit. As in@25# for the flat
case it can then be verified that the approximating differ
tial equation forn@1 is

1

2 S 4

9
l P
4 ]2

]p2
21DAupuc~p,f!52

1

3
kĤmatter~p!c~p,f!,

~16!

wherec(p,f) is an interpolation of the preclassicals̃n(f).
The left hand side can be written as2 1

2 (4K̂211)ac(a,f)
which shows that the Wheeler-DeWitt equation as
Schrödinger-like quantization of Eq.~4! is reproduced at
large volume. The ordering is fixed in Eq.~16! and follows
from the nonsingular difference equation of loop quantu
cosmology. For de Sitter space with a cosmological cons
L we obtain the general solution

Aupuc~p!5A Ai @2~3L/2!1/3~p23/2L!#

1B Bi@2~3L/2!1/3~p23/2L!#

in terms of Airy functions. The wave functionc(p) either is

zero in p50, if and only if A Ai @( 3
2 )4/3L22/3#5

2B Bi@( 3
2 )4/3L22/3#, or diverges there.
3-3
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III. DYNAMICAL INITIAL CONDITIONS

When we approach the classical singularity atn50 by
going to smaller values ofn, we have to take into accoun
discrepancies between the Wheeler-DeWitt equation and
difference equation of loop quantum cosmology. As a diff
ence equation, the exact constraint equation~14! can be used
as a recurrence relation which determines the wave func
starting from initial values at some finite positive values ofn.
We can find valuessn for smallern as long as the coefficien
Vun24u/22Vun24u/221 of lowest order in Eq.~14! does not
vanish. However, it does vanish if and only ifn54 such that
we cannot fixs0(f) in this way. As in @11# this does not
mean that there is a singularity, because we can ev
throughn50 and find all values of the wave function for
negative internal timen. But the part of the constraint equa
tion for n54 has to be satisfied. Instead of fixings0 in terms
of the initial data, it implies a linear relation betweens4 and
s8, which have already been determined in previous step
the recurrence. Therefore, the constraint equation impo
implicitly a linear consistency condition on the initial da
which serves as an initial condition. Since it is not impos
separately but follows from the evolution equation, it
called a dynamical initial condition@12#. Note that it gives us
only partial information and does not fix the wave functi
completely in the presence of matter fields.

While the values0 of the wave function at the classica
singularity is undetermined and it is thus impossible to f
mulate the dynamical initial conditions as conditions atn
50, they imply effectively that a preclassical wave functi
has to approach zero close ton50. In this sense, it is simila
to DeWitt’s initial condition which requires the wave func
tion to vanish at the classical singularity. In contrast to t
condition, however, the dynamical initial condition is we
posed in the discrete context~see, e.g.,@14#!.

For the closed model we can now also compare the
namical initial condition with other traditional proposal
most importantly the no-boundary@3# and the tunneling pro-
posals@4#, which have been discussed only in this case.
do that we first consider the approximate differential eq
tion for the Hamiltonian constraint~16! and rewrite it in
terms of the scale factora and in the ‘‘de Sitter’’ approxima-
tion where the scalar field potential is approximated by
~cosmological! constantV and the scalar field dependence
ignored:

Fa
d

da
a21

d

da
2

a2

l P
4 ~926kVa2!GaC~a!50. ~17!

This represents an ordering of the Hamiltonian constra
that has not previously been considered~compare, e.g., the
general analysis in@27#!. If we write C̃5aC we see that in
order for C to be bounded for smalla we demand thatC̃
approach zero. Forka2V!1 the solution to Eq.~17! satis-
fying C̃(0)50 is AaI1/2(3a2/2l P

2), where I 1/2 is the modi-
fied Bessel function andA is an arbitrary constant. Whe
matched to the WKB solutions in the exponential region, t
solution picks out the exponentially increasing WKB mod
12402
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thus resembling the no-boundary wave function. We no
however, that in the limit of smalla, C approaches zero
satisfying DeWitt’s initial condition.

The previous analysis in terms ofC(a) shares the same
flaws as the traditional approach to quantum cosmology
that conditions on the wave function are specified near
classical singularity where we might expect to see large c
rections due to the effects of discrete space. The evolu
equation~14! needs to be solved in order to determine if t
discrete effects modify the analysis. Since the dynamical
tial condition forces the discrete wave function to approa
zero for smalla, the wave function increases for growinga
before it starts to oscillate. As in the previous analysis,
wave function exponentially increases in the classically f
bidden region. A numerical solution to Eq.~14! with a cos-
mological constant exhibits this behavior~Fig. 1!, reinforc-
ing the previous analysis and indicating that the dynam
initial condition imposes conditions similar to the no
boundary proposal.

IV. INFLATION

It has been speculated that the no-boundary proposal
not predict large enough initial values for the inflaton fie
which suggests that a sufficient amount of inflation cannot
realized@28#. If correct, the same conclusion would apply f
a wave function satisfying the dynamical initial conditio
However, loop quantum cosmology presents an alterna
mechanism of inflation@13# which does not necessarily re
quire an inflaton field. This scenario exploits quantum mo
fications of the classical equations of motion implied by t
discrete formulation. There are several types of correctio
but we can focus on the nonperturbative effect that res
from a quantization of the inverse metric components, si
it implies the most drastic changes. The effect contains
ambiguity parameter, and by choosing it to be large the n
perturbative modification extends into the semiclassical
gime. The wave function can then be approximated a

FIG. 1. Preclassical solution (Vunu/22Vunu/221) s̃n of the discrete
equation ~14! compared to a solutionApc(p) of the Wheeler-
DeWitt equation~16! such thatc is regular atp50 ~solid line!,
corresponding to de Sitter space withkL51022l P

22 .
3-4
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wave packet, following the effective classical equations
motion which we will discuss now.

The eigenvalues of a density operatord̂ j5a23̂
j , which

quantizes the classical densitya23 in the kinetic part of the
matter Hamiltonian, can be computed explicitly@22# for ar-
bitrary values of the ambiguity parameterj, which is a half
integer. Here we need only an approximate expression
the eigenvalues:

dj ,n;~ 1
6 g l P

2n!23/2p~n/2j !6,

where the function

p~q!5 8
77 q1/4$7@~q11!11/42uq21u11/4#

211q@~q11!7/42sgn~q21!uq21u7/4#% ~18!

approaches 1 at large values but incorporates nonperturb
corrections for smalln,2 j . In the effective classical equa
tions of motion the modified density will appear as a co
tinuous function,

dj~a!5a23p~3a2/g l P
2 j !6

;5
126

76 S 1

3
g l P

2 j D 215/2

a12 for a2!
1

3
g l P

2 j ,

a23 for a2@
1

3
g l P

2 j ,

~19!

derived usinga2; 1
6 g l P

2n. The precise form of the behavio
for small a is subject to quantization ambiguities, but qua
tatively it always has the above form. Additionally, th
power ofa in the small-a approximation is usually high, a
in the example used here.

In particular,dj (0)50 anddj (a) increases as a functio
of a at small volume, in contrast to the classical divergen
Consequently, the effective matter Hamiltonian, e.
Hmatter

eff (a)5 1
2 dj f

(a)pf
2 1a3V(f) for a scalar, always satis

fies

lim
a→0

a21Hmatter
eff ~a!50,

even taking into account the kinetic term, which would d
verge classically. We can view the Friedmann equationȧ2

1V(a)50 as describing a classical motion in the effecti
potential

V~a!512 2
3 ka21Hmatter

eff ~a!, ~20!

where we ignore the dependence on the matter field. Bec
the modified density is increasing at smalla just like a po-
tential term, the derivativeV8(a) of the effective potential is
negative for smalla. The effective classical equation of mo
tion then implies
12402
f
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ä52 1
2 V8~a!.0 for small a,

such that the effective classical evolution at smalla is infla-
tionary. An inflaton field and therefore large initial values a
not required for this kind of inflation, which is purely due t
quantum geometry effects.

It is, however, necessary that there be a large eno
overlap between the region where the effective potential
creases and the classically allowed region where the effec
potential is negative. In this intersection we can use the
fective classical equations of motion and obtain an amoun
inflation af /ai given by the initial scale factorai where the
classically allowed region starts and the final scale factoaf
where the modified increasing density goes over into
standard densitya23. For the flat model, the entire region o
positivea was classically allowed, andai can be arbitrarily
small, restricted only by the eventual breakdown of the
fective classical approximation. In the closed model, ho
ever, the nonzero intrinsic curvature leads to a hill in t
effective potential at smalla such that the classically allowe
region starts at a positive value of the scale factor. An
proximate expression for the ratioaf /ai can be derived in the
case of a free massless scalar field. Using the small-a ap-
proximation of dj in Eq. ~19!, the classical turning poin
corresponds to where the effective potential equals zero. T
gives

ai
11'

3

k

76

126 S g l P
2 j f

3 D 15/2 1

pf
2

, ~21!

wherepf is the conjugate scalar field momentum. The infl
tionary regime ends wheredj f

(a) takes on its maximum

value, which corresponds toaf'Ag l P
2 j f/3 @22#. For practical

values of the parameters the inflationary region is small,
getting large amounts of inflation would require large valu
of pf .

A. Suppression of intrinsic curvature

With the quantization of the closed model presented so
it is hard to get a large amount of inflation because the
trinsic curvature introduces a potential hill, which prohib
the scale factor from attaining very small values classica
The divergence of the kinetic part of the matter Hamilt
nians, which could cancel the potential hill, is cut off b
quantum geometry effects. Since the inverse scale facto
isotropic cosmologies is related to the extrinsic curvatu
this can also be interpreted as an extrinsic curvature cu
Because intrinsic and extrinsic curvature belong to the sa
geometrical object in a covariant treatment, one could exp
that there is a similar effect which suppresses the intrin
curvature represented by the spin connectionG5 1

2 . This can
in fact be realized by viewing the closed isotropic model
being embedded in the anisotropic Bianchi type IX mod
3-5
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An anisotropic model has three independent triad com
nentspI which determine the intrinsic curvature via the sp
connectionG15 1

2 @p2/p31p3/p22p2p3/(p1)2# and analo-
gous componentsG2 andG3 ~for Bianchi type IX@26#!. The
isotropic model can be obtained by fixingp15p25p35p
such thatG I5

1
2 5G. The Hamiltonian constraint of the Bi

anchi type IX model@15# requires a quantization of the sp
connection, which has to be a well-defined operator. Si
the componentsG I contain inverse powers of the triad, w
have to use inverse triad operators introducing another
biguity parameterj G which can be different from the param
eter j f used when quantizing the densityd5a23 appearing
in the scalar matter Hamiltonian. After reducing the qua
tized Bianchi type IX spin connection to isotropy we obta
with p(q) of Eq. ~18!, the eigenvalues

G j G ,n5 1
2 @2p~n/2j G!22p~n/2j G!4#,

replacingG5 1
2 in the constraint equation. Whenn is small,

the effective inverse triad components decrease such thaG j G
becomes smaller than12 for small volume and approache
zero at the classical singularity. Forn@2 j G we haveG j G ,n

; 1
2 . In fact, we do have a suppression of the intrinsic c

vature just as the extrinsic curvature is suppressed.
As a consequence, the potential hill in the effective pot

tial shrinks because the intrinsic curvature term wh
equaled 1 before is no longer constant and approaches
lima→0 VG(a)50 rather than 1~see Fig. 2!, where

VG~a!54Geff
2 ~a!2 2

3 ka21Hmatter
eff ~a!

and

FIG. 2. Example of an effective potentialVG(a) (a in multiples
of the Planck length! for a massless scalar with zero potential an
cosmological constantkL51023l P

22 . The ambiguity parameter
are j G520, j f5100, and the scalar momentum isAkpf5100l P

2 .
For larger values ofa the potential continues to decrease since
cosmological constant term dominates. The dashed lines are
effective potential withoutG suppression and a kinetic term~ap-
proaching 1 fora50), and withoutG suppression and with a stan
dard kinetic term~which diverges fora50).
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Geff~a!5 1
2 @2p~3a2/g l P

2 j G!22p~3a2/g l P
2 j G!4#.

The presence of a matter potential then leads to a sm
classically allowed region betweena50 and some positive
value~see Fig. 3!, because the potential term increases fas
than the suppression in the intrinsic curvature term, owing
the large power in the small-a approximation~19!. Initially,
the effective potential decreases, implying an inflationary
och. After some time, the increasingG will start to dominate
the effective potential, which terminates inflation. WhenG
increases such that the effective potential reaches pos
values, the classically allowed region ends and a poten
hill emerges where the wave function stops oscillating a
instead changes exponentially. After the hill, we have
second phase of inflation already observed above, which
ally will last only for a small number ofe-foldings. However,
the first phase of inflation can start at values of the sc
factor arbitrarily close to zero such that the amount of infl
tion can be very high, just as in the flat case.

So far we assumed that the ambiguity parameterj G in the
intrinsic curvature term is smaller than the parameterj f we
had originally in the matter terms. If this is not the case,
potential hill can even disappear completely ifj G. j f ,
which implies a single phase of inflation. The closed mo
is then very similar to the flat model for small volumes d
to the suppression of the intrinsic curvature term.

Another consequence of the suppression is that the w
function, which has to start with a small value at smalln,
oscillates in the first classically allowed region and can gr
before it reaches the second region at large volume~Fig. 4!.
One might think that this scenario would lead to more sim
larities between the discrete wave function and that obtai
with the tunneling proposal, which would be the case if t
wave function decayed in the classically forbidden reg
@28#. However, in the classically forbidden region we st
have two independent solutions, one exponentially incre
ing and one exponentially decreasing. Since the dynam

e
he

FIG. 3. The effective potential with the same parameters a
Fig. 2 in the small-a classically allowed region.
3-6
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initial condition, unlike the tunneling proposal, is not tailore
to select the decreasing part, the increasing part will
present and dominate the solution~Fig. 5!.

B. Horizon problem

We now seek to answer quantitatively the question
whether or not enough inflation is obtained with the quant
modifications. A central problem with the standard big ba
~SBB! proposal is the ‘‘horizon problem’’ in which the co
moving region observed by the cosmological microwa
background~CMB! is larger than the comoving forward ligh
cone at the recombination timet rec, thus implying regions of
the CMB out of causal contact. The forward light co
l f(t rec) is given by

l f~ t rec!5E
0

trec 1

a~ t !
dt5E

amin

arec da

aȧ
. ~22!

FIG. 4. Wave function in the small-a classically allowed region
with G suppression forj G550, obtained as a solution to Eq.~14!
with 4g2G j G ,n replacingg2 on the left hand side.

FIG. 5. Logarithm of the absolute value of the wave functi
between the first two classically allowed regions (j G550). In the
classically forbidden region the wave function grows by more th
40 orders of magnitude and is very similar to a solution withouG
suppression.
12402
e
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We consider matter in the form of a scalar field, and t
Friedmann equation becomes

S ȧ

a
D 2

5
kdj f

~a!pf
2

3a3
1

2k

3
V~f!1

4~G22G!

a2
, ~23!

where pf5a3ḟ is the conjugate momentum to the sca
field and G is the spin connection. We note that whenG
51/2 we regain the usual21/a2 term of the Friedmann
equation for the closed model. For smalla we can use the
expansion fordj (a) in Eq. ~19! to derive an approximate
expression forl f(t rec).

First we consider a free, massless scalar field where
potential is zero and the conjugate momentum is constan
the flat model the curvature term is zero and thusȧ;a11/2

and the forward light cone diverges as the integral is take
small values ofa. In the closed model, however, the integr
begins at the minimum classical scale factor such that it d
not diverge. Given that the amount of inflation is small f
the closed model in this region, it would require very lar
values forpf to overcome the horizon problem. We will se
that this problem is further evidenced in the flatness proble

In the presence of a scalar potential, for small enouga
the potential term will dominate over the kinetic term. W
have shown that, withG suppression, the closed model b
haves similarly to the flat model in the small-a limit. Since
the kinetic term is suppressed, the scalar field remains ne
constant and standard inflationary behavior occurs clos
the classical singularity. There,a grows exponentially and
ȧ;a; thus the forward light cone diverges beginning at t
classical singularity.

C. Flatness problem

The flatness problem represents itself as a fine-tun
problem. The dimensionless parameterV5r/rc5kr/3H2,
whererc53H2/k is the critical density andH5ȧ/a is the
Hubble parameter, indicates the spatial topology:V.1 gives
a closed universe whereasV<1 gives an open universe. I
the SBB model,V51 is an unstable fixed point; the devia
tion e5V21 grows likea for a matter dominated univers
and likea2 for a radiation dominated universe. Current me
surements put the value ofV'1 @29#, requiring V to be
extraordinarily close to 1 in the early universe in the SB
scenario.

We considere5V215k/ȧ2 and use the Friedman
equation~23! to write e as a function of the scale factora:

e5k~ 1
3 kdj f

~a!a21pf
2 1 2

3 ka2V~f!2k!21. ~24!

In standard inflation, the universe undergoes a period of
ponential growth in whiche is driven close to zero~spatial
flatness!, thus avoiding the necessity of fine-tuningV and
predicting a current value ofV close to 1 for most models
With quantum modificationse is also driven toward zero
during the inflationary period. Considering a massless sc
field, for smalla the kinetic term is an increasing function o

n

3-7
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a and thuse decreases untildj f
(a) becomes a decreasin

function, after whiche grows witha. The minimum value of
e can be approximated by using the fact thatdj f

(a) takes its

maximum value atapeak'Ag l P
2 j f/3 with dj ,max'apeak

23 @22#.
This gives a minimum value

emin'Fkpf
2

3 S 3

g l P
2 j f

D 2

21G21

. ~25!

Assuming that there exists a region where the matter kin
term dominates the curvature term we find thatemin

; j f
2 /pf

2 ; thus in order to drivee sufficiently close to zero
we need small values ofj f and large values ofpf . This
presents a problem sincej f needs to be sufficiently large s
that the quantum corrections occur in the region where
classical equations of motion are valid. If we take a reas
able value ofj f5100, we find that in order fore to have the
required accuracy of 10260 near the Plank regime~assuming
no second round of standard inflation!, Akpf needs to be on
the order of 1030l P

2 . It thus seems unlikely that the quantu
corrections alone can provide enough inflation for the clo
model.

The inclusion of a potential does not help the matter.
drive e close enough to zero would require either unnatura
large values of the potential or very large values of the fi
scale factor at the end of inflation. The latter scenario wo
then be equivalent to standard inflation.

D. Summary

We have seen that the ratioaf /ai cannot be large enoug
for a sufficient amount of inflation with natural values of th
different parameters, which are mainly the half-integer a
biguity label j f and the initial valuepf of the scalar momen
tum. As a function of these parameters,af /ai increases only
slowly with pf and decreases withj f ~small values ofj f
also appear more natural from a conceptual point of view!. If
we invokeG suppression, introducing a new parameterj G ,
the situation looks better since we have an early inflation
region with smallai . However, in this regime the viability o
the effective framework remains to be understood.

The best scenario can be obtained by using quantum
ometry inflation in order to generate standard inflation. T
happens naturally whenever there is a matter compo
which is well approximated by a scalar with a flat potenti
In the quantum geometry regime the equations of motion
the scalar have a different form from the usual one beca
of the modified density. Equations of motion can be deriv
from the Hamiltonian, which for a scalar has the effecti
form

Hmatter
eff ~a!5 1

2 dj f
~a!pf

2 1a3V~f!.

This yields

ḟ5$f,Hmatter
eff ~a!%5dj f

~a!pf
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ṗf5$pf ,Hmatter
eff ~a!%52a3V8~f!,

resulting in the second order equation of motion

f̈5pf

ddj f
~a!

dt
1dj f

~a! ṗf5pfȧ dj f
8 ~a!2a3dj f

~a!V8~f!

5a
d logdj f

~a!

da
Hḟ2a3dj f

~a!V8~f!

with the Hubble parameterH. In the standard casedj (a)
5a23, we havead log dj(a)/da523, and the first order
term serves as a friction which leads to slow roll for a su
ciently flat potential. For the modifieddj (a) at small volume,
however,dj (a) increases and thusad logdj(a)/da is positive.
In this case, the friction term has the opposite sign and for
the scalar to move up the potential~see Fig. 6, whose initia

FIG. 6. Scale factora ~top! and scalarf ~bottom! in Planck
units with a mass termkV(f)51023\f2/2. The first phase of
quantum geometry inflation~which ends att'0.4) leads to large
initial f for a second phase of slow roll inflation~with j f5100 and

initial values f050, Akḟ0'1025l P
21 at a052l P such that

Akpf,0'100l P
2).
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values have been chosen for the purpose of illustration;
can easily achieve larger maximal values off by using a
larger initial ḟ).

Thus, quantum geometry modifications drive the scalar
the potential during early phases, even if it starts in a m
mum, thereby producing large initial values for standard
flation. It remains to be seen whether the standard inflat
ary phase will wash away any possible signature of
quantum geometry phase, or if it can be distinguished fr
other scenarios.

V. DISCUSSION

We have studied the closed isotropic model in loop qu
tum cosmology and seen that it reproduces all of the m
general results: its evolution is nonsingular and it pred
dynamical initial conditions as well as the occurrence of
flation. The advantage of using the closed model is that
are able to compare with older attempts to understand
quantum dynamics. In fact, those approaches are reprod
at large volumes, but many new properties result at sm
volumes. The initial conditions, for instance, have a ve
different origin since they are derived in part from the d
namical law and not imposed by hand. Furthermore, the
tor ordering of the constraint is fixed by the requirement o
nonsingular evolution. Older attempts have often be
plagued by the factor ordering problem, because differ
orderings can lead to qualitatively different results and e
invalidate certain proposals@27#. Still, as in any quantization
there are many ambiguities which can be included with c
tain parameters likej f . These ambiguities, however, usual
lead only to quantitative differences, leaving the main res
unchanged. They can, therefore, be used for a phenom
logical analysis.

As for dynamical initial conditions, the constraint equ
tion requires the wave function to approach very small v
ues at the classical singularity such that the effect is o
similar to DeWitt’s initial condition. However, due to th
effects of the discreteness the initial value problem is w
posed~which presents some realization of the Planck pot
tial of @30#!. The first quantization we used for the clos
model is closely related to the no-boundary proposal, whil
would be different from the tunneling proposal@we note,
however, that we ignored the kinetic term of the mat
Hamiltonian in Eq.~17! as usual in this context; in a mor
general discussion one can also expect more differences
the no-boundary proposal due to quantum geometry mo
cations of the kinetic term as in@13##. However, this quanti-
zation does not take into account a possible suppressio
ty
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intrinsic curvature which can be realized by embedding
isotropic model in the anisotropic Bianchi type IX mode
This introduces a second ambiguity parameterj G , which in-
fluences the results. Ifj f, j G , there is no potential hill and
the whole region of scale factors between zero and a poss
recollapse value is allowed classically. In this case,
closed model is very similar to the flat model at small vo
ume. Otherwise, there will be a potential hill and we ha
two classically allowed regions. For smallj G , the first region
is only small and the wave function again resembles tha
the no-boundary proposal. Ifj G is increased, the first class
cally allowed region grows such that the wave function c
increase there and is nonzero at the start of the intermed
classically forbidden region. However, the result rema
closer to the no-boundary proposal than to the tunneling p
posal because the exponentially increasing branch of
wave function will dominate in the classically forbidden r
gion. Still, depending on the values of the ambiguity para
eters we obtain modifications of the old proposals, realiz
different aspects of them. Furthermore, the values will infl
ence the amount of inflation achieved within a given mod

We also have to give some cautionary remarks. While
quantization of the flat model can be regarded as being v
close to that of the full theory, the closed model requir
special input due to the large intrinsic curvature. In the fl
model, the intrinsic curvature vanishes identically, and in
full theory it can be ignored locally. Therefore, it has to
verified that the physical effects are not artifacts of the s
cial techniques but indeed model the full theory. As we ha
seen here, viewing a symmetric model as being embedde
a less symmetric one can lead to important effects. In
case, those effects (G suppression! were welcome and im-
proved the model from the point of view of cosmologic
model building. It is certainly a very important issue to i
vestigate the similar, but much more complicated, corresp
dence between symmetric models and the full theory. A
more complicated models contain many ambiguity para
eters whose physical roles and reasonable values are
completely clear yet. Still, they provide a rich ground f
phenomenology which allows studying the same objects
effects present in the full theory in a much more simplifi
context.
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